Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 23(1): 31, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422622

RESUMO

BACKGROUND: Reef manta rays (Mobula alfredi) are globally distributed in tropical and subtropical seas. Their life history traits (slow growth, late maturity, low reproductive output) make them vulnerable to perturbations and therefore require informed management strategies. Previous studies have reported wide-spread genetic connectivity along continental shelves suggesting high gene flow along continuous habitats spanning hundreds of kilometers. However, in the Hawaiian Islands, tagging and photo-identification evidence suggest island populations are isolated despite proximity, a hypothesis that has not yet been evaluated with genetic data. RESULTS: This island-resident hypothesis was tested by analyzing whole mitogenome haplotypes and 2048 nuclear single nucleotide polymorphisms (SNPs) between M. alfredi (n = 38) on Hawai'i Island and Maui Nui (the 4-island complex of Maui, Moloka'i, Lana'i and Kaho'olawe). Strong divergence in the mitogenome (ΦST = 0.488) relative to nuclear genome-wide SNPs (neutral FST = 0.003; outlier FST = 0.186), and clustering of mitochondrial haplotypes among islands provides robust evidence that female reef manta rays are strongly philopatric and do not migrate between these two island groups. Combined with restricted male-mediated migration, equivalent to a single male moving between islands every 2.2 generations (~ 64 years), we provide evidence these populations are significantly demographically isolated. Estimates of contemporary effective population size (Ne) are 104 (95% CI: 99-110) in Hawai'i Island and 129 (95% CI: 122-136) in Maui Nui. CONCLUSIONS: Concordant with evidence from photo identification and tagging studies, these genetic results indicate reef manta rays in Hawai'i have small, genetically-isolated resident island populations. We hypothesize that due to the Island Mass Effect, large islands provide sufficient resources to support resident populations, thereby making crossing deep channels separating island groups unnecessary. Small effective population size, low genetic diversity, and k-selected life history traits make these isolated populations vulnerable to region-specific anthropogenic threats, which include entanglement, boat strikes, and habitat degradation. The long-term persistence of reef manta rays in the Hawaiian Islands will require island-specific management strategies.


Assuntos
Elasmobrânquios , Animais , Masculino , Feminino , Havaí , Ecossistema , Genômica , Oceanos e Mares
2.
Mitochondrial DNA B Resour ; 8(2): 197-203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755876

RESUMO

We provide the complete mitochondrial genome of the reef manta ray, Mobula alfredi, using an ezRAD approach. The total length of the mitogenome was 18,166 bp and contained 13 protein-coding genes, 22 transfer RNAs genes, two ribosomal RNA genes, and one non-coding control region. The gene organization and length are similar to other Mobula species. This reference mitogenome that includes the control region is expected to be a valuable resource for molecular-based species identification, population genomics, and phylogeography.

3.
PLoS One ; 7(8): e43167, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937022

RESUMO

Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood.


Assuntos
Golfinhos/fisiologia , Ecossistema , Animais
4.
J Acoust Soc Am ; 120(2): 1103-10, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16938996

RESUMO

A vertical array of five hydrophones was used to measure the acoustic field in the vertical plane of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of at least 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at a depth of 35 m. An eight-channel TASCAM recorder with a bandwidth of 24 kHz was used to record the hydrophone signals. The location (distance and depth) of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 151 and 173 dB re 1 microPa. One of the purposes of this study was to estimate potential sound exposure of nearby conspecifics. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicated that the sounds are projected in the horizontal direction despite the singer being canted head downward anywhere from about 25 degrees to 90 degrees. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.


Assuntos
Acústica , Jubarte/fisiologia , Vocalização Animal/fisiologia , Animais , Espectrografia do Som , Gravação em Fita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...